Assessing Riparian Vegetation

Using UAS-mounted Lidar, Multispectral, and Color Sensors

CAS-based remote sensing tools are **superior** to ground-based traditional vegetation surveys in terms of their **finer resolution** and **greater spatial extent** of **quantitative data** collection

Desert Conservation Program

- Clark County, Las Vegas, Henderson, North Las Vegas, Boulder City, Mesquite, NDOT
- Multiple Species Habitat Conservation Plan authorizing take of protected species
- Compliance with the Endangered Species Act

Avian Habitat Quality Monitoring

Species	Desired habitat characteristics
Yellow-billed cuckoo	Extensive, mature cottonwood and willow stands
Southwestern willow flycatcher	Dense, diverse riparian shrubs
Blue grosbeak Phainopepla Summer tanager Vermillion flycatcher Arizona Bell's vireo	Cottonwood-willow habitat and associated desert washes with shrubby woodlands

- Vegetation conditions are an index of habitat quality
- Metrics for vegetation condition include:
 - vegetation canopy cover
 - canopy height
 - vegetation density
 - greenness / vigor
- Traditional data collection requires field- & time- & personnel-intensive survey methods

Objectives

Identify the vegetation metrics and habitat descriptions that can be obtained using very high resolution sensors and evaluate their usefulness for monitoring riparian restoration

- Test recently emerging remote sensing technologies
- Desired characteristics include:
 - Adaptive methods
 - Cost-effectiveness
 - Straight-forward analysis
 - Comparability to other data sets
 - Nested and opportunistic monitoring
 - Measure attributes that indicate habitat quality for MSHCP-covered riparian species
- Integrate technologies into DCP's long-term habitat quality monitoring

Metrics for Habitat Quality Monitoring

Vegetation	Specific Attribute / Apolycic		sor Ty	vpe*
Attribute	Specific Attribute / Analysis	Lidar	MS	RGB
	Vegetation & ground composition		Χ	X
Covor	(Total cover)		\mathbf{X}	
COVER	Cover by groups & species	X	X	
	Understory vs. overstory	Χ		
Hoight	Overall/average height	Χ	х	х
пеідпі	Height by canopy layer	Χ		
	LAI, Ch, LAD TGI ***	X	Χ	
Density	NDVI, MSAVI ***	X		
	NDVI, MSAVI, TGI ***		Χ	
Greenness	Live vs stressed vs dead		Χ	Х
	Slopes, bank height, erosion,	X		
Other	river channel shifts	X	Χ	X

*** LAI: Leaf Area Index

Ch: Chlorophyll concentration

LAD: Leaf Area Density

TGI: Triangular Greenness Index

NDVI: Normalized Difference Vegetation Index

MSAVI: Modified Soil-Adjusted Vegetation Index

* Lidar: Light Detection And Ranging MS: 5 band MultiSpectral sensor RGB: standard digital camera

Sensors & UASs

Each sensor was mounted on a different Uncrewed Aerial System and required unique flight parameters

Imagery/ Data Type ¹	Lidar	Multispectral [B, G, R, RE, NIR]	RGB
UAS			
	DJI Matrice 600 Pro	Draganflyer Commander	DGI Phantom 4 Pro v2.0
Sensor	Surficoral Andrew	NUCLEOR OF THE STREET	
	Velodyne HDL-32E	MicaSense RedEdge-MX	20MP Camera [1" CMOS]
Altitude (m)	60	110	80
GSD ² (cm)	86*	7.4	2.2
Area (ha)	65	52	43

1. RGB: 3 wide overlapping bands in the **R**ed, **G**reen, & **B**lue wavelengths Multispectral: 5 discrete narrow bands centered on 475 (blue), 560 (green), 668 (red), 717 (red edge), & 842 nm (near infrared)

2. GSD: Ground Sampling Distance – the distance on the ground represented by each pixel in the image

* Average number of laser "ground returns per square meter"

Data Collection Areas

- 62 ha "Bunkerville East" parcel in the floodplain of the Virgin River, southwest of Mesquite, NV
- All flights and field data collection were completed on April 7-8, 2021
- Nine ground control points (GCPs) located with a Trimble R8 Base Station & R10 RTK Rover
- GCPs served to accurately georeference imagery & as centroids for training data plots

Data Analysis

Vegetation Attribute	Specific Attribute / Analysis	Analysis	Analysis Software & Packages
	Vegetation & ground composition Individually detected hull area Total cover NDVD MSAVI**		FUSION – CanopyModel, R – lidR
Caver			QGIS/GRASS – r.reclass function
Cover	Cover by groups & species	Supervised land cover classification	R – RandomForest
	Understory vs. overstory	Canopy relief ratio (CRR)	FUSION – Gridmetrics
Hoight	Overall/average height	Maximum height from hulls	FUSION – CanopyModel, R-lidR
Height	Height by canopy layer	Structure from motion (SfM)	Global Mapper or Pix4Dmapper
	LAI, Ch, LAD TGI ***	Leaf area density (LAD)	R – RStoolbox & Raster
Density	NDVI, MSAVI ***	Leaf area index (LAI)	R – lidR
Crooppose	NDVI, MSAVI, TGI ***	NDVI, MSAVI**	R – RStoolbox & Raster
Greenness	Live vs stressed vs dead	Live vs dead	Part of land cover classification
Other	Slopes, bank height, erosion,	Terrain models (DEM, DTM)	Global Mapper, FUSION
Other	river channel shifts	Surface models (DSM)	Global Mapper, Pix4Dmapper

*** LAI: Leaf Area Index
 Ch: Chlorophyll concentration
 <u>LAD: Leaf Area Density</u>
 TGI: Triangular Greenness Index
 NDVI: Normalized Difference Vegetation Index

MSAVI: Modified Soil-Adjusted Vegetation Index

Calculating Vegetation Canopy Cover

Normalized Difference Vegetation Index

 $NDVI = \frac{NIR - Red}{NIR + Red}$ $(-1 \le NDVI \le 1)$

Calculating Vegetation Canopy Cover

Supervised Land Cover Classification

Land Cover Classification Models

Evaluated six models for accuracy at classifying the project area

- Original reflectance bands
 Models 1, 4 & 6
- Principle components analysis (PCA) of reflectance data
 Models 2, 3, 5 & 6
- Indices of soil salinity & surface water presence Models 4, 5 & 6
- Vegetation canopy heights
 Models 4, 5 & 6

RandomForest analysis in R

Models 4, 5 & 6 all were highly accurate

Model #	Model	Overall Accuracy ¹	Kappa²	Para- meters ³
1	Blue + Green + Red + Red Edge + NIR ⁴	0.771	0.754	5
2	PC1 + PC2 + PC3 ⁵	0.749	0.729	3
3	Model 2 + PC4 + PC5	0.817	0.803	5
4	Model 1 + NDSI + NDWI + CHM ⁶	0.853	0.841	8*
5	Model 2 + NDSI + NDWI + CHM	0.874	0.864	6*
6	Model 5 + PC4 + PC5	0.894	0.886	8*

1. Proportion of correctly classified land cover types

2. Overall accuracy adjusted by imbalance frequency of cover type occurrence

- 3. Number of predictive parameters (i.e., model complexity)
- 4. Multispectral visible light bands and a near infrared (NIR) band
- 5. Principal Components (PC1–PC5)
- 6. Normalized Difference Salinity Index [NDSI = (G-R)/(G+R)]
 Normalized Difference Water Index [NDWI = (G-NIR)/(G+NIR)]
 Canopy Height Model (CHM) from aerial lidar data
- * Extra blue band

Land Cover Classification

Land Cover (LC) classes most accurately described by Model 6

LC = PC1 + PC2 + PC3 + PC4 + PC5 + NDSI + NDWI + CHM

[Overall accuracy = 0.894 Kappa = 0.886]

"g" = green, or fully leafed out "b" = brown, no leaves but presumed living Error = % of training cells misclassified

Describing Species' Habitat Characteristics

Species	Desired habitat characteristics
Yellow-billed cuckoo	Extensive, mature cottonwood and willow stands
Southwestern willow flycatcher	Dense, diverse riparian shrubs
Blue grosbeak Phainopepla Summer tanager Vermillion flycatcher Arizona Bell's vireo	Cottonwood-willow habitat and associated desert washes with shrubby woodlands

- Birds have specific habitat requirements, e.g.,
 - specific trees for foraging or nesting
 - specific structure, including overstory and understory densities
- Lidar provides detailed measurements of structure
 - terrestrial and/or aerial lidar

Lidar data \rightarrow Leaf Area Density

Leaf Area Density

Characterizing riparian vegetation structure:

- Plot 1 sparse vegetation, \leq 3.75 m, mostly < 2.8 m
- Plot 2 sparse vegetation, \leq 3 m, mostly < 2.5 m
- Plot 3 denser vegetation & > 1 canopy layer,dense arrowweed < 4 m, upper canopy of Goodding's willow 9m tall

Aerial lidar point cloud

rabbitbrush

Plot 2

Arrowweed

Plot 3

Remote Sensing Provides Quantitative Metrics

Vegetation	Spacific Attributa / Analysis	Data Quality by Sensor**		
Attribute	ribute Specific Attribute / Analysis		MS	RGB
	Vegetation & ground composition	QUANT	QUANT	qual
Cover	Total cover	QUANT	QUANT	qual
Cover	Cover by groups & species	qual	QUANT	qual
	Understory vs. overstory	QUANT	NA	NA
Hoight	Overall/average height	QUANT	qual	qual
Height	Height by canopy layer	QUANT	NA	NA
Density	LAI, Ch, LAD TGI ***	QUANT	QUANT	NA
	NDVI, MSAVI ***	NA	QUANT	NA
Greenness	NDVI, MSAVI, TGI ***	NA	QUANT	NA
	Live vs stressed vs dead	NA	q / Q	qual
Other	Slopes, bank height, erosion, river channel shifts	QUANT	qual	qual
	Generalized cost (data collection & processing)	\$\$\$	\$\$\$	\$
Ratings	Analysis complexity (1- low, 3= complex)	2	3	1

qual:qualitativedata onlyQUANT:high qualityquantitativemeasurements

High Resolution Sensors Provide More Data

Imagery/ Data Type¹	Lidar	Multispectral [B, G, R, RE, NIR]	RGB	LPI
Sensor	Velodyne HDL-32E	RedEdge-MX	20MP Camera	Pin or Laser pointer
GSD ² (cm)	86*	7.4	2.2	100*
Area (ha)	65	52	43	0–25*
Time (hr)	~ 3	~ 3.5	~ 2.5	~ 8
Samples (#)	> 50 million	~ 500 million	~ 900 million	1,000
Samples (ha ⁻¹)	~ 1 million	~ 9 million	~ 20 million	~ 40

Summary

Sensor	Positives	Negatives
Multi- spectral	 <u>Out-performs</u> other sensors for species & functional grp differentiation & plant vigor Calculate indices of vegetation density 	Surface & height measurements coarseHigh processing power required for large areas
Aerial Lidar	 <u>Best</u> for calculating surfaces and heights Ability to calculate density/canopy layers 	 High processing power required for large areas Requires additional data to ID species
Terrestrial Lidar	• <u>Maximum</u> detail (point density) collected	 Short data collection range Bulky, heavy equipment Requires additional data to ID species
RGB	 <u>Easiest</u> and <u>cheapest</u> Useful for identifying common species Complements abilities of other sensors 	 Least capable of producing data for rigorous quantitative analysis on its own

Summary

Sensor	Positives	Negatives
Multi- spectral	 <u>Out-performs</u> other sensors for species & functional grp differentiation & plant vigor Calculate indices of vegetation density 	Surface & height measurements coarseHigh processing power required for large areas
Aerial Lidar	 <u>Best</u> for calculating surfaces and heights Ability to calculate density/canopy layers 	 High processing power required for large areas Requires additional data to ID species
Terrestrial Lidar	• <u>Maximum</u> detail (point density) collected	 Short data collection range Bulky, heavy equipment Requires additional data to ID species
RGB	 <u>Easiest</u> and <u>cheapest</u> Useful for identifying common species Complements abilities of other sensors 	 Least capable of producing data for rigorous quantitative analysis on its own

